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Abstract

A review of the mechanics of lap-shear joints is followed by a detailed analysis of the problem using a cohesive-zone

approach. The cohesive-zone model allows not only the influence of geometry to be considered, but also allows the

cohesive properties of the interface and plastic deformation of the adherends to be included in the analysis. The first

part of the paper examines the strength of elastic joints, with an emphasis on the effects of geometry, the cohesive

strength of the adhesive, and mode-mixedness. The cohesive-zone models show a transition to the predictions of linear-

elastic fracture mechanics under conditions where these are expected to apply. The second part of the paper examines

the effect of plasticity in the adherends, and looks at the transition between the elastic and plastic regimes. The final part

of the paper makes comparisons between the predictions of the numerical calculations and experimental observations

for a model system consisting of a commercial adhesive used to bond an aluminum alloy. Using cohesive-zone pa-

rameters previously determined for this particular combination of materials, the numerical predictions show excellent

agreement with the experimental observations.

� 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Lap-shear; Cohesive zone; Adhesive joints; Fracture mechanics

1. Introduction

Joints that are of the form of the single lap-shear geometry shown in Fig. 1 are of great practical im-
portance. The behavior of such joints depends not only on the properties of the adherends and the bond
between them, but also on geometrical parameters such as the length of the bonded portion of the overlap l,
the total length of the specimen L, the crack length, a and the thickness of the adherends, h. Of particular
note among the models of the lap-shear geometry are the beam-bending analyses that have been developed
to calculate the deformations and stresses when the adherends deform in an elastic fashion. These analyses
have a particular emphasis on calculating the distribution of the bending moment along the joint (Goland
and Reissner, 1944; Hart-Smith, 1973; Allman, 1977; Chen and Cheng, 1983; Tsai et al., 1998). Numerical
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analyses have provided further refinements to understanding the effects of the material and geometrical
parameters (Adams and Peppiatt, 1974; Bigwood and Crocombe, 1989; Tsai and Morton, 1994, 1995). A
major conclusion of this body of literature is that, despite its apparent simplicity, the behavior of a lap-
shear specimen is very sensitive to details of the geometry and to how the specimen is loaded.
Historically, two types of analyses for the strength of lap-shear joints have been developed. One is a

stress-based approach that uses the beam-bending analyses discussed in the previous paragraph to deduce
stresses or strains in the adhesive layer. Failure is assumed to occur when these stresses or strains reach a
critical value (Harris and Adams, 1984; Bigwood and Crocombe, 1990; Crocombe and Bigwood, 1992).
However, the use of linear-elastic fracture-mechanics (LEFM) and its energy-based approach has now
gained general recognition as the most appropriate way of predicting failure if the adherends remain elastic
(Anderson et al., 1988; Chai, 1988; Fernlund et al., 1994; Papini et al., 1994; Tong, 1996). Furthermore, the
results of the beam-bending analyses can be used to make a connection with the work of Suo and
Hutchinson (1990) for the delamination of beam-like geometries, by recognizing that an interface crack in a
lap-shear specimen is acted on by a combination of axial load (per unit width), P, and bending moment (per
unit width),M, as illustrated in Fig. 2 (Papini et al., 1994; Lai et al., 1996). If both adherends have an equal
thickness, h, the bending moment,M, is proportional to Ph, but the constant of proportionality, k, is both
geometry- and load-dependent (Tsai and Morton, 1995): 1

M
Ph

¼ k
P
Eh

;
l
h
;
L
l

� �
; ð1Þ

Fig. 2. Load and moments acting on a symmetrical, single-lap-shear specimen.

Fig. 1. (a) Single lap-shear geometry and (b) asymmetrical lap-shear geometry.

1 This result is for plane stress. In general, Poisson’s ratio is an additional parameter that should be included; it is neglected

throughout this paper.
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where E is the elastic modulus of the adherends. For linear-elastic joints, with a crack length, a, significantly
greater than h, the energy-release rate can be written as (Suo and Hutchinson, 1990)

G ¼ P 2

2Eh
þ 6M

2

Eh3
� P 2

4Eh

"
� 12ðM � 0:5PhÞ2

16Eh3

#
: ð2Þ

So that, from Eq. (1),

G ¼ P 2

16Eh
½84k2 þ 12k þ 1�: ð3Þ

Since k is a function of P=Eh, l=h and L=l, the complex interaction between G, the load, and the geometry
can be seen immediately. The relationship between M and P given in Eq. (1) can also be used with the
general results of Suo and Hutchinson (1990) to deduce an expression for the phase angle, w, of the
symmetrical single lap-shear geometry:

tanw ¼ GII

GI

� �1=2
¼
�
� 1

2
ffiffiffi
3

p 1

2k

�
þ 3
�	

; ð4Þ

where GI is the mode-I component of the energy-release rate and GII is the mode-II component.
There are two limiting cases for which analytical values of k can be computed. From Fig. 3a, it can be

seen that k must equal 0.5 when the loads and geometry are such that negligible deformation of the sample
occurs. The energy-release rate is then

G ¼ 7P 2

4Eh
; ð5Þ

and the phase angle is )49.1�. However, if the geometry is long enough to be completely flexible, and the
applied loads are relatively high, the free arm will deform so that its neutral axis lies along the line of action
of the applied load and is, therefore, not subject to a bending moment (Fig. 3b). In this second case, there is
a limiting steady-state condition in which extension of the crack does not change the geometry, and the
energy-release rate can be deduced by comparing the stress state in the bonded portion of the specimen
(well way from the free arm) to the stress state in the free arm (well away from the grips and bonded portion
of the sample). Both portions are subjected to a uniform load of P, and the energy-release rate can then be
written as

G ¼ P 2

4Eh
: ð6Þ

Fig. 3. Configuration and distribution of loads and moments at the (a) low-load, or stiff, limit for a single-lap-shear joint, and (b) high-

load, or compliant, limit for a single-lap-shear joint.
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Hence, from Eq. (2), it can be shown that k ¼ 0:1306 under these conditions, so that the bending moment
acting on the crack is given by M ¼ 0:1306 Ph and the phase angle is equal to )63.1�. The results of a finite-
element calculation showing how the energy-release rate for a lap-shear geometry varies between the two
analytical limits of Eqs. (5) and (6) are shown in Fig. 4.
If the mixed-mode fracture criterion of the adhesive layer is known, the strength of the joint can be

predicted by equating the energy-release rate to the toughness at the appropriate phase angle. As an ex-
ample, a simple, but general, mixed-mode failure criterion that captures the essential elements of experi-
mental observations is given by

GI
CI0

þ GII
CII0

¼ 1; ð7Þ

where CII0=CI0 ¼ 1 corresponds to the limit of Griffith fracture with a mode-independent toughness, and
CII0=CI0 ¼ 1 corresponds to the limit where only the mode-I component of the energy-release rate con-
tributes to brittle fracture. Since both the energy-release rate and the degree of mode-mixedness are
functions of k, the strength of a lap-shear bond (per unit width), Pf , under conditions of LEFM must be of
the general form

Pf
CI0

¼ f
Eh
CI0

;
l
h
;
L
l
;
CII0
CI0

� �
: ð8Þ

It is possible to use Eqs. (3), (4) and (7) to write down two asymptotic expressions for the strength of a lap-
shear joint under LEFM conditions:

Fig. 4. The variation of energy-release rate with load under plane-stress linear-elastic fracture-mechanics conditions for a single-lap-

shear joint. For these calculations, l=h ¼ 60, L=l ¼ 16:5, and a crack of length a=h ¼ 10 extended from each side of the bonded region.
The ends of the specimen were prevented from rotating.
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Pf
CI0

¼ 9:33ðCII0=CI0Þ
1:33þ ðCII0=CI0Þ

� 	1=2 Eh
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� 	1=2
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CI0

� � ffiffiffiffiffiffiffi
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s
when k ¼ 0:50 ð9aÞ

Pf
CI0

¼ 19:5 CII0=CI0ð Þ
3:89þ CII0=CI0ð Þ

� 	1=2 Eh
CI0

� 	1=2
¼ K2

CII0
CI0

� � ffiffiffiffiffiffiffi
Eh
CI0

s
when k ¼ 0:13 ð9bÞ

The constant of proportionality K1ðCII0=CI0Þ varies between the two limits of 2.0 and 3.1 depending on the
sensitivity of toughness to phase angle, whereas K2ðCII0=CI0Þ varies between 2.0 and 4.4. Eq. (9a) is expected
to be appropriate for short stiff geometries, and Eq. (9b) is expected to be asymptotically correct in the
opposite limit of long compliant geometries with small values of Eh=CI0. The utility of a mixed-mode linear-
elastic approach such as this has been demonstrated experimentally (Fernlund and Spelt, 1991; Fernlund
et al., 1994; Papini et al., 1994).
For many practical adhesives and geometries, plastic deformation of the adherends can occur before the

adhesive layer fails (Kim and Kim, 1988; Lai and Dillard, 1997). For example, beam-bending theory can be
used to show that if the strength, Pf , of the lap-shear specimen is greater than

Pf
CI0

>
1

1þ 6k
rY
E

� � Eh
CI0

� �
; ð10Þ

yielding will occur in the free arm of the specimen before crack growth occurs. It can be seen from Eqs. (9a),
(9b) and (10) that plasticity in the adherends will occur before fracture if

Eh
CI0

<
62:0ðCII0=CI0Þ
3:89þ ðCII0=CI0Þ

ðrY=EÞ�2 to
149ðCII0=CI0Þ
1:33þ ðCII0=CI0Þ

ðrY=EÞ�2; ð11Þ

depending on the geometries and properties of the joint. If this condition is met, the strength of the joint
becomes sensitive to the plastic properties of the adherends. The lack of analytical tools that can be used to
provide a reliable correlation between the joint strength and the ‘‘intrinsic’’ properties of the adhesive layer
and the adherends under these conditions has left the interpretation of single lap-shear joints in a somewhat
qualitative state (Hart-Smith, 1993).
The inherent difficulties associated with plasticity can be circumvented by using cohesive-zone modeling

that combines elements of both the energy- and strength-based approaches to fracture. A mixed-mode
cohesive-zone model (CZM) has been used to investigate interfacial fracture of bi-material systems
(Tvergaard and Hutchinson, 1992, 1996; Wei and Hutchinson, 1997, 1999). A similar approach has been
developed and used with considerable success to model the deformation and fracture of plastically-
deforming adhesive joints (Yang et al., 1999, 2000; Yang and Thouless, 2001). It can also be used to model
the behavior of elastic joints when LEFM assumptions are violated because of large-scale deformation of
the adhesive layer. The CZM of Cavalli and Thouless (2001); Yang and Thouless (2001) is used in the
present paper to provide an extensive examination of the behavior of single-lap shear joints in both the
elastic and plastic regimes.
The results of this paper are presented in three sections. The first section is an analysis of the limit in

which the adherends deform in a purely linear-elastic fashion, so that the predictions of the CZM can be
compared with the linear-elastic fracture mechanics results described earlier. This section is followed by a
general analysis of geometries in which plastic and elastic deformation of the adherends can occur, so as to
illustrate the general case and to explore the transition between the two modes of deformation. The results
of this section are validated by making comparisons between experimental results and the predictions of
associated numerical analyses using, without modification, a mixed-mode CZM previously developed for the
experimental system. The final section of this paper addresses the problem of asymmetrical lap-shear joints
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in which one adherend is of a different thickness from the other. Comparisons between the numerical
predictions and experimental observations are again presented for this configuration.

2. Numerical approach

In this study of the lap-shear test, it is assumed that the role of the adhesive layer is to provide cohesive
tractions across the interface of the joint. These tractions are dictated by the geometry, testing rate and
constitutive properties of the adhesive (Yang et al., 1999). Furthermore, it is assumed that the adhesive
layer can fail under the influence of both shear and normal loading. Previous studies on mixed-mode failure
of adhesive joints (Yang and Thouless, 2001) indicate that different cohesive laws are required for the two
modes of deformation, and that two parameters are required to describe the cohesive tractions for each
mode of deformation (Fig. 5). The mode-I toughness, CI0, is the area under the mode-I traction-separation
law, and the mode-I cohesive strength, r̂r, is the maximum normal stress that can be supported by the
adhesive layer. The mode-II toughness, CII0, is the area under the mode-II traction-separation law, and the
mode-II cohesive strength, ŝs, is the maximum shear stress that can be supported by the adhesive layer. It
can be shown that the precise shapes of the cohesive laws are not particularly significant.
In any mixed-mode problem, an assumption about the coupling between the two fracture modes needs

to be made. The failure criterion of Eq. (7) is particularly amenable to adaptation in a cohesive-zone
analysis (Yang and Thouless, 2001). It permits a general mode-independent failure criterion to be incor-
porated into the CZM that can be used under a variety of conditions including elastic and plastic geom-
etries. The definitions of the mode-I and mode-II components of the energy-release rates are generalized so
that GI and GII are defined as the areas under the traction-separation laws integrated up to the values of the
displacements dictated by the current deformation of the joint (Fig. 5). Once the failure criterion has been
met for an element in the cohesive zone, it is assumed that the element is no longer capable of bearing any
load. The mode-mixedness can be deduced directly from the numerical predictions by examining the value
of GII=GI for a crack-tip cohesive-zone element just before it fails (Yang and Thouless, 2001), and using this
ratio in the expression for the phase angle given in Eq. (4). It should be noted that various schemes can be
devised for defining mode-mixedness in these types of problem. They all tend to be affected by the cohesive
properties, and the mode-mixedness may vary during loading. The one proposed here appeared to be the

Fig. 5. Schematic illustrations of the mode-I and mode-II traction-separation laws used for the mixed-mode cohesive-zone calculations.
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most satisfactory way of describing mode-mixedness, and gave good agreement with the LEFM description
where appropriate.
A commercial code (ABAQUS version 5.8) was used to model the adherends. Two-dimensional plane-

stress elements were used for the adherends. These were assumed to exhibit linear-elastic behavior until
yield and isotropic hardening after yield. A von Mises yield criterion was assumed, and the constitutive
behavior of the adherends was assumed to be described by

r ¼ Ee for r6 rY; ð12aÞ

r ¼ rYðE=rYÞnen for rP rY; ð12bÞ
where r and e are the uniaxial stress and strain, rY is the uniaxial yield stress, E is the Young’s modulus of
the adherends, and n is the power-law hardening exponent. The CZM introduces the mode-I and mode-II
cohesive stresses, r

_
and s

_
, into the analysis, in addition to the toughness of the two modes. The strength of

an equal thickness, linear-elastic, lap-shear geometry is of the form 2

Pf
CI0

¼ f
Eh
CI0

;
l
h
;
L
l
;
CII0
CI0

;
r
_

E
;
s
_

r
_

 !
; ð13aÞ

where the first four terms are identical to the LEFM form of Eq. (8), and the last two terms come from the
parameters of the CZM. This general form is appropriate when the adherends remain elastic, but LEFM
conditions are not valid because of large-scale deformations in the adhesive. If yielding of the adherends
can occur, then the additional terms rY and n must be included to reflect the yield properties of the
adherends:

Pf
CI0

¼ f
Eh
CI0

;
l
h
;
L
l
;
CII0
CI0

;
r
_

E
;
s
_

r̂r
;
rY
E

; n

 !
: ð13bÞ

In the present study, the primary emphasis is on the effects of geometry, as expressed by the first three
non-dimensional groups of the equations. However, the properties of the adhesive layer (i.e., r

_
, s
_
, CI0 and

CII0) are assumed to be independent of geometry. The effects of geometry on the cohesive properties of an
adhesive layer have been studied by Kafkalidis et al. (2000), and Cavalli and Thouless (2001).

3. Results

3.1. Elastic adherends

The predictions of lap-shear strength for elastic adherends are shown in Figs. 6–8. Figs. 6 and 7 show
that the strength is very sensitive to the geometry but exhibits asymptotic steady-state behavior when both
the overlap length and the total length of the specimen are long enough. In particular, Fig. 6 shows how the
lap-shear strength varies as a function of overlap length. Superimposed on this plot are the limiting LEFM
predictions from Eq. (9b). These asymptotic limits are expected to be valid for relatively long, compliant

2 The thickness of the cohesive zone, b, and the crack length, a, are additional parameters that should be included in a full

description of a mixed-mode geometry. Generally, the results are not very sensitive to the thickness of the cohesive zone if b=h 
 1.

Furthermore, calculations with non-zero values of l=h show that, for the range of cohesive strengths used in this paper, an initial crack
has little influence beyond its effect on the bonded ligament length. This appears to be consistent with the observations of Papini et al.

(1994) that the strength of adhesively-bonded lap shear joints is not strongly dependent on the existence of pre-existing cracks.

Therefore, unless otherwise specified, constant values of b=h ¼ 1=48 and a=h ¼ 0 were used for the results presented in this study.
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Fig. 7. Plot of normalized strength versus normalized total length for elastic, single-lap-shear joints. The other dimensionless

parameters for this figure are l=h ¼ 20, r̂r=E ¼ 8:7� 10�4, ŝs=r̂r ¼ 0:58 and CII0=CI0 ¼ 5:4.

Fig. 6. Plot of normalized strength versus normalized overlap length for elastic, single-lap-shear joints. The other dimensionless

parameters for this figure are L=l ¼ 11, r̂r=E ¼ 8:7� 10�4, ŝs=r̂r ¼ 0:58 and CII0=CI0 ¼ 5:4.
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geometries, and it can be seen that they are in excellent agreement with the numerical results for very long
overlap lengths. The mode-mixedness was also in good agreement with the LEFM predictions in this re-
gime. However, it will also be observed from Fig. 6 that as the overlap length decreases, even the lower
LEFM limit of Eq. (9a) provides a prediction that is much too large. This discrepancy arises because of
large-scale deformation along the interface associated with relatively low values of the cohesive shear and
normal strengths. Linear-elastic fracture-mechanics predictions are only appropriate when parameters such
as ECI0=r

_2
h ¼ ðEh=CI0Þ�1ðr

_
=EÞ�2 are small, where r

_
is a representative cohesive strength and h is a rep-

resentative dimension. 3

Fig. 7 shows how the strength of a lap-shear joint varies with the total length of the specimen for a fixed
overlap length. An asymptotic value is reached when the specimen length is greater than about 10 times the
overlap length. In this particular example, although the overlap length is twenty times the adherend
thickness it is short enough for large-scale slip to influence the strength, and the analytical results of Eqs.
(9a) and (9b) are inappropriate. The final figure of this series (Fig. 8) shows load–displacement plots for
elastic lap-shear specimens with different values of mixed-mode toughness ratio, CII0=CI0, for fixed values of
the other parameters including Eh=CI0. The shape of the curves are all identical; the effect of increasing the
mode-II toughness is to increase the strength. It should be noted that the displacement in this figure is
defined as the horizontal projection of the relative displacement of two points each situated a short distance
from the ends of the overlap region. Consequently, the non-linearity of the load–displacement curve close

3 The condition for the validity of LEFM results is usually stated as h > 2:5ðKIc=r2YÞ, where the yield strength, rY, is taken as a
measure of the crack-tip cohesive strength. It can be seen that this is equivalent to the condition ECI0=r

_2
h < 0:4.

Fig. 8. Plots of load versus displacement for elastic, single-lap-shear joints with different values of CII0=CI0. The other dimensionless
parameters for this figure are L=l ¼ 11, l=h ¼ 100, r̂r=E ¼ 1:0� 10�3, Eh=CI0 ¼ 6:0� 107 and ŝs=r̂r ¼ 0:58. The three different loading
curves superimpose upon one another. The displacement for this plot is defined as the projection along the axis of the specimen of the

displacement of two gauge points located on the centroidal axes of the arms at a distance Lg ¼ 108h apart. Therefore, the non-linearity
at the origin of the curve arises from this definition of displacement and from the initial rotation of the specimen.
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to the origin arises from rotation of the specimen upon initial loading. This rotation of the lap shear ge-
ometry needs to be considered when experimentally investigating load–displacement curves.

3.2. Elastic–plastic adherends

Figs. 9–11 show how the strength depends on geometry and interfacial toughness for the general case of
elastic–plastic adherends. The trends of strength with geometry are similar to the trends when the defor-
mation is purely elastic; however, the asymptotic steady-state solutions occur at somewhat shorter specimen
lengths owing to the increased deformation of the adherends. The transition between elastic and plastic
behavior can be seen in Fig. 11 in which the elastic–plastic solutions are plotted as a function of Eh=CI0 for
different values of yield strength. Superimposed on these plots is the purely elastic solution for identical
values of the appropriate dimensionless parameters. Plasticity dominates at low values of the parameter
Eh=CI0, and elasticity dominates at higher values. The transition from plasticity to elasticity occurs at
higher values of Eh=CI0 as rY=E increases, as predicted by Eq. (11). At sufficiently large values of Eh=CI0 the
deformation of the adherends is entirely elastic and the strength follows the ðEh=CI0Þ1=2 dependence pre-
dicted by LEFM (Eq. (9)). Just below the transition, plasticity results in a lap-shear strength that increases
with decreasing yield strength (Fig. 11). It should be noted that if the ratio r

_
=rY is significantly higher than

the values chosen for this study, the solutions at large values of Eh=CI0 would tend to a small-scale yielding
limit, in which crack-tip plasticity would result in a higher effective toughness (Tvergaard and Hutchinson,
1992), rather than the elastic limit shown in Fig. 11.
Somewhat surprisingly, the trends described above can be reversed at very low values of Eh=CI0 and the

lap-shear strength can increase with increasing yield strength. Such behavior is geometrical in origin and is

Fig. 9. Plot of normalized strength versus normalized overlap length for elastic–plastic lap-shear joints. The other dimensionless

parameters for this figure are L=l ¼ 11, r̂r=E ¼ 8:7� 10�4, ŝs=r̂r ¼ 0:58, CII0=CI0 ¼ 5:4, r̂r=rY ¼ 0:75, 6=h ¼ 1=12 and n ¼ 0:238.
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coupled to the ratio of h=6 and to the fact that CII0 is much larger than CI0. As Eh=CI0 is reduced, the critical
normal displacement for fracture increases, and eventually can reach values that are too large to be ac-
commodated by the smoothly curved elastic substrates. Consequently, failure may occur only with a sig-
nificantly increased contribution from mode-II deformation, thereby increasing the strength. This increase

Fig. 10. Plot of normalized strength versus normalized total length for elastic–plastic lap-shear joints. The other dimensionless

parameters for this figure are l=h ¼ 20, r̂r=E ¼ 8:7� 10�4, ŝs=r̂r ¼ 0:58, CII0=CI0 ¼ 5:4, r̂r=rY ¼ 0:75, 6=h ¼ 1=12 and n ¼ 0:238.

Fig. 11. Plots of normalized strength versus Eh=CI0 for elastic-plastic lap-shear joints for different values of rY=E. The dimensionless
parameters for this figure are L=l ¼ 11, l=h ¼ 100, r̂r=E ¼ 10�3, ŝs=r̂r ¼ 0:58., CII0=CI0 ¼ 5:0 and n ¼ 0:238. Superimposed on this plot
are the numerical predictions for the strength of a perfectly elastic lap-shear joint with the same cohesive-zone and geometrical pa-

rameters.
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in strength is accompanied by an increase in the magnitude of the phase angle at fracture from about 65� (as
predicted by LEFM) to 80� or more. On the other hand, plastic joints can form plastic hinges near the roots
of the overlap regions and accommodate large local deformations. The resulting ‘‘peel’’ type of failure
means that the mode-I component becomes more dominant when the yield strength of the adherends drops
and, consequently, the strength drops with yield strength.

3.3. Comparisons between experimental and numerical results

The numerical results presented in this paper were tested by comparing them to experimental obser-
vations using a bonded system for which the mixed-mode fracture parameters have been well-characterized
in earlier work (Yang and Thouless, 2001). In this earlier work, it was shown that both the form of the
load–displacement curves and the deformation could be accurately predicted. These comparisons were
confined to a limited set of similar geometries with different adherend thicknesses. In the present study, the
comparison was extended to look at the effects of overlap length in symmetrical specimens, and the effects
of asymmetry in the adherend thickness. The symmetrical single-lap-shear specimens were made from 2.0
mm thick 5754 aluminum alloy sheets bonded using a commercial adhesive (Ciba Specialty Chemicals
XD4600) with a bond-line thickness of 250 lm. The thickness of the adhesive layer was maintained by using
uniform glass spheres as spacers. Teflon� tape was used to limit the extent of the adhesive to the overlap
region. The details of the bonding process is outlined elsewhere (Thouless et al., 1998). A series of tests were
conducted to measure the lap-shear strength of these joints using different overlaps ranging from 2 mm
(l=h ¼ 1) to 50 mm (l=h ¼ 25), with the overall length of the joints being maintained at L ¼ 300 mm. The
velocity of the ends of the specimens was kept constant at 0.2 mm s�1. The displacement was measured
optically using two points separated by a gauge length of 75 mm. At the magnification used, these mea-
surements had a spatial resolution of �40 lm. The numerical calculations were conducted using, without
modification, mixed-mode fracture parameters previously established for this system. The mode-I values
(for interfacial fracture, as is appropriate for the mixed-mode loading in a lap-shear test) were
CI0 ¼1:0� 0:15 kJm�2 and r̂r ¼ 60� 10 MPa, and the mode-II values were CII0 ¼ 5:4� 0:8 kJm�2 and ŝs ¼
35� 5 MPa (Yang and Thouless, 2001). As determined from uniaxial tensile tests, the modulus and yield
strength of the aluminum were taken to be 69 GPa and 95 MPa, while the power-law hardening exponent, n
was taken to be 0.238. The agreements between the results of the numerical calculations and the experi-
mental behavior of the joints with different overlap lengths were generally excellent. As with the earlier
results of Yang and Thouless (2001), fairly accurate predictions for the loads, displacements and defor-
mations were obtained. For example, a summary of the experimental and numerical results for the de-
pendence of lap-shear strength on overlap length is given in Fig. 12. It should be noted that, as discussed
earlier, the behavior of the lap-shear geometry is very sensitive to boundary conditions, and the experi-
mental configuration results in a slight rotation and, hence, slight misalignment of the grips. This effect was
not mimicked numerically, and may be responsible for the slight discrepancies in the predicted strengths
that can be seen in Fig. 12.
To complete this work on lap-shear geometries, a second series of experiments and simulations were

done using asymmetrical single lap-shear joints (Fig. 1b) for which the ratio between the adherend
thicknesses provides an additional dimensionless group that affects the strength of the joint. These speci-
mens were fabricated in an identical fashion to the symmetrical set. The length of the bonded segments, l,
was kept at 25 mm, the overall length of the specimens, L, was kept at 180 mm, and the gauge length for the
displacement measurements was 55 mm for all specimens. The adhesive thickness was 250 lm, and the
thicknesses of the adherends was varied between 1.0 and 3.0 mm, giving a range of thickness ratios, h1:h2 of
between 3.0 and 1.0. Since the two arms were of unequal thickness, square shims of complementary
thickness were bonded to the ends of each free arm, so that the joints would not be artificially rotated when
clamped in the aligned machine grips. During the test, the arms of the specimens were pulled apart by a
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tensile testing machine at a constant displacement rate of 0.2 mm s�1. A high-resolution CCD camera was
used to observe the deformation, and the crack initiation and propagation. In all cases, except for the
h1:h2¼ (3.0 mm):(2.3 mm) combination, a stable crack was initiated at the interface between the adhesive
and the thinner arm and propagated roughly halfway along the overlap before the onset of an instability led
to very fast fracture. The h1:h2¼ (3.0 mm):(2.3 mm) specimens exhibited an instability as soon as the initial
crack was formed. A sequence of four images for a typical example of stable crack growth with h1:h2¼ (2.0
mm):(1.0 mm) is shown in Fig. 13. It will be observed that the crack propagation is reminiscent of crack
growth in a peel test. The thinner arm peels off the thicker one, with a plastic hinge forming at the root of
the thin arm and moving along the bonded region.
Using the same parameters for the cohesive-zone and aluminum described above, numerical predictions

were made for the deformation and load–displacement curves. These were all in good agreement with the
experimental observations. For example, the predictions for the deformed shapes of a specimen with
h1:h2¼ (2.0 mm):(1.0 mm) at various stages during a test are shown in Fig. 14, and can be compared with
the experimentally observed shapes illustrated in Fig. 13. Fig. 15a and b show comparisons between the
numerical predictions for the load–displacement curves and the experimentally observed curves for
thickness ratios of h1:h2¼ (3.0 mm):(2.3 mm) and h1:h2¼ (2.0 mm):(1.0 mm). In particular, it should be
noted that the numerical results predicted the much higher loads and lower displacements for the thickness
ratio of h1:h2¼ (3.0 mm):(2.3 mm). The onset of crack growth is indicated for both the experimental and
numerical curves. Both the experimental results and the numerical predictions show an instability occurring
at the onset of crack growth for a thickness ratio of h1:h2¼ (3.0 mm):(2.3 mm), but a regime of stable crack

Fig. 12. A comparison between the measured and numerically-predicted peak loads for a series of symmetrical lap-shear joints made

with 2.0 mm thick aluminum adherends bonded with a 250 lm thick layer of a commercial adhesive (Ciba Specialty Chemicals

XD4600). There was no initial crack in either the numerical simulations or in the experimental configuration. However, Teflon� tape

was used to prevent the adhesive from bonding outside the overlap region.

M.S. Kafkalidis, M.D. Thouless / International Journal of Solids and Structures 39 (2002) 4367–4383 4379



Fig. 13. A sequence of images showing the propagation of a stable crack in a lap-shear geometry with h1:h2 ¼ (2.0 mm):(1.0 mm). (a) The

initial state of the specimen and (b) an advanced state of plastic deformation of the thinner arm prior to crack initiation. A plastic hinge

has formed near the overlap area. (c) Initial stage of crack growth, which occurs after the thinner arm has been drawn significantly. (d) A

steady-state crack, advancing as the plastic hinge formed by the thinner arm moves along the interface of the adhesive layer.

Fig. 14. Images showing the numerical predictions for the sequence of deformation and crack growth in an asymmetric, single, shear-

lap joint that has a thickness ratio of h1:h2 ¼ (2.0 mm:1.0 mm). The parameters used in these calculations were appropriate for the

experimental system of Fig. 13.
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growth for a thickness ratio of h1:h2¼ (1.0 mm):(2.0 mm). The peak load in these figures, which corre-
sponds to crack initiation, depends strongly on the thickness of the adherends. Similar agreements were
obtained for all the other thickness ratios that were studied.

4. Conclusions

The mechanics of the lap-shear geometry can be quite complicated, even under conditions when LEFM
is appropriate, owing to a great sensitivity to geometrical parameters. When the cohesive strength of the
adhesive is low enough for large-scale deformations within the interfacial layer to become important, or
when non-linear deformations occur within the adherend, a numerical cohesive-zone approach combining
strength and energy considerations is required to describe the behavior. The results of such a model have
been presented in this paper. In the first part of the paper, the results for adherends that remain elastic have
been presented. Provided the effects of large-scale deformations (caused by both shear and normal tractions
across the interface) are limited, LEFM results provide a reasonable approximation to the fracture be-
havior. The effects of plastic deformation in the adherends become important at low values of Eh=CI0 and
rY=E; i.e., when the toughness of the interface is high, the thickness of the adherends is low, or if the yield
stress of the adherends is low. Plasticity in the adherends occurs below a critical value of Eh=CI0 and just
below this transition the lap-shear strength increases with a decrease in yield strength. However, at much
lower values of Eh=CI0 plasticity tends to reduce the lap-shear strength because it enhances local peeling
deformations and increases the effect of mode-I failure. Very large cohesive stresses may also introduce
crack-tip plasticity in the adherends, but these effects have not been explored for the adhesive-joint ap-
plications considered here. The final portion of this paper compares the numerical predictions with ex-
perimental observations. A commercial adhesive/aluminum adherend system was used for which the

Fig. 15. The load–displacement curve for asymmetrical lap-shear joints with (a) a thickness ratio of h1:h2 ¼ (2.0 mm):(1.0 mm) and (b)

a thickness ratio of h1:h2 ¼ (3.0 mm):(2.3 mm). The displacement is defined as the projection along the axis of the specimen of

the displacement of two gauge points located 55 mm apart on the centroidal axes of the arms. There was no initial crack in either the

numerical simulations or in the experimental configuration; Teflon� tape was used to prevent the adhesive from bonding outside the

overlap region.
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cohesive-zone parameters had been determined in earlier work. These parameters were used directly in the
numerical modeling with no modification at all. The resulting predictions showed excellent agreement with
the experimental observations.
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